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We present a theoretical study of the transport characteristics of molecular junctions, where first-row di-
atomic molecules are attached to �001� gold and platinum electrodes. We find that the conductance of all of
these junctions is on the order of the conductance quantum unit G0, spelling out that they belong to the
transparent regime. We further find that the transmission coefficients show wide plateaus as a function of the
energy, instead of the usual sharp resonances that signal the molecular levels in the tunneling regime. We use
Caroli’s model to show that this is a rather generic property of the transparent regime of a junction, which is
driven by a strong effective coupling between the delocalized molecular levels and the conduction channels at
the electrodes. We analyze the transmission coefficients and chemical bonding of gold/benzene and gold/
benzene-dithiolate junctions to understand why the latter show large resistances while the former are highly
conductive.
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I. INTRODUCTION

The field of molecular electronics was arisen by the early
realization that organic molecules could act as rectifiers1

when attached to conducting electrodes to form tunnel junc-
tions. Many experiments with a large variety of organic mol-
ecules have been performed,2,3 typically finding values of the
conductance G several orders of magnitude smaller than G0
�G0=2e2 /h is the conductance quantum� and a large variabil-
ity, which hinder the reproducibility of the experiments. Mo-
lecular junctions can be understood in terms of resonant tun-
neling models,4 where the conduction is carried through the
highest occupied molecular orbital and lowest unoccupied
molecular orbital �HOMO and LUMO, respectively�. These
are revealed as sharp resonances in either the densities of
states �DOSs� of the molecule or the transmission coeffi-
cients T�E� of the junction and are usually located 1 or 2 eV
above or below the Fermi level of the molecule, respectively.
Conductance values on the order of G0 can only be achieved
by pinning one of those resonances to the Fermi level of the
electrodes. Otherwise, the conductance is very low.

The invention of the scanning tunneling microscope5 al-
lowed the fabrication of stable atomic point contacts.6–10

These junctions were found to be highly transparent in many
cases and to show values of the conductance on the order of
G0, which confirmed early theoretical predictions on the
matter.11,12 Theoretical analyses of these junctions found that
their transmission coefficients T�E� show wide plateaus as a
function of the energy E of the incoming electrons with
heights of order 1. The high transparency of these junctions
is due to the good matching between the conduction channels
at the electrodes and those at the molecule. The �contact�
resistance of the junction is different from zero because of
the different number of channels at the electrodes and the
junction which leads to a recombination of the former to
match the later.4,11

Importantly, more recent developments using mechani-
cally controllable break junction �MCBJ� techniques demon-

strated that high values of the conductance ��G0� are not
restricted to atomic constrictions but could also be obtained
even when platinum or palladium electrodes are bridged by
hydrogen molecules.13,14 These results were reproduced by
theoretical simulations,15,16 which also showed how the an-
tibonding level of the hydrogen molecule hybridized strongly
with the conduction channels of the electrodes, providing a
junction with a single conduction channel. The transparency
of this channel was manifested in the transmission coeffi-
cients T�E� that had a wide plateau of height 1. Furthermore,
very recent experimental work confirms that junctions com-
prising platinum electrodes and either simple benzene17 or a
number of small molecules18 show conductance values on
the order of G0.

As stated above, junctions in the tunneling regime can
shed conductance values of order G0 provided that a molecu-
lar level is exactly pinned to the Fermi energy. But it is hard
to believe that all of the junctions discussed in those recent
experiments17,18 display this pinning mechanism. Instead,
they clearly indicate that highly transparent molecular junc-
tions can be fabricated with relative ease. They also indi-
rectly hint that thiol capping necessarily leads to junctions in
the tunneling regime.

We have performed a number of transport simulations19 of
molecular junctions where first-row diatomic molecules are
sandwiched by semi-infinite �001� gold and platinum elec-
trodes with our code SMEAGOL.20 Our simulations confirm
that this type of junctions is highly conductive. Indeed, the
transmission coefficients do not show resonant behavior but
wide plateaus of height of order 1 instead. To sustain theo-
retically these simulations, we argue that the conductive be-
havior of a junction is determined by two factors. First, by
the conjugation nature of the molecule, e.g., whether the
HOMO and LUMO levels are delocalized throughout the
whole molecule or not. Second, by the strength of the chemi-
cal bond between the conduction channels at the electrodes
and these delocalized HOMO or LUMO. A junction will be
highly conductive provided that its molecule is conjugated
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and the chemical bond referred above is strong.
Conjugated molecules are reasonably well approximated

by Caroli’s model.21 We use this model below to show that
when the chemical bond between the delocalized HOMO or
LUMO and the conduction channels is strong, the transmis-
sion coefficients show wide plateaus whose height is on the
order of G0. We argue that these plateaus are robust against
changes in the energy of the HOMO/LUMO levels so that
there is no need to fine tune their position to the Fermi level
of the electrodes in order to achieve large conductance val-
ues. On the contrary, when the conduction channels at the
electrodes do not bind chemically with neither the HOMO
nor the LUMO levels then the junction is in the tunneling
regime where it shows resonant behavior.

Diatomic or triatomic molecules are sufficiently small to
show conjugation. Likewise, benzene-based molecules are
archetypical conjugated molecules, where the conjugation is
driven by internal � bonding. It is therefore important to
understand unequivocally why benzene-dithiolate �BDT�/
gold junctions show strong tunneling behavior while on the
contrary the simpler benzene/gold junctions are highly trans-
parent. We perform below a study of the transmission coef-
ficients of these junctions. Our study indicates that direct
Au-S bonding is detrimental of their conductive behavior.

II. SIMULATIONS OF FIRST-ROW DIATOMIC
MOLECULES CONTACTED TO (001) GOLD

AND PLATINUM ELECTRODES

We have performed simulations of the conductance of
�001� gold and platinum junctions that are bridged by di-
atomic molecules of the first-row elements, using our code
SMEAGOL.20 SMEAGOL is a transport program which uses the
nonequilibrium Green’s functions formalism4 to compute the
charge density and current of the junction. The Hamiltonian
of the junction is determined by discrete Fourier transform
theory via the code SIESTA.22

We distinguished two clear cases in our study, depending
on whether the aim was to map the ab initio simulations to
the simple model or to do more realistic simulations that can
be compared with experiments. In the first case we used gold
since it has only s states at the Fermi level and gives results
that are easy to interpret. We took for simplicity a flat sur-
face, oriented the molecules perpendicular to it, and set the
electrode-molecule distance equal to the equilibrium distance
of the gold-H2 junction. In contrast, we used for platinum a
more realistic geometry, motivated by the recent experiments
by Tal et al.18 We placed in these cases a pyramid of plati-
num atoms on top of the flat surfaces, as in our earlier
publications.15 We oriented the molecules in a variety of
angles, including the bridge, perpendicular and tilted orien-
tations. We finally relaxed the forces of the atoms at the
pyramids and molecules. We found in this respect that Li2,
Be2, B2, C2, and N2 relax to the bridge position while O2, F2,
and CO relax to a tilted orientation. The perpendicular con-
figuration is stable for some molecules when the distance
between leads is very small but such distance does not cor-
respond to the most stable separation.

Our code computes the conductance of the junction via
the formula

G�V� =
dIleads�V�

dV
= G0

d

d�− eV�� d�T�E = ��,V��nL − nR� ,

�1�

where T�E ,V� are the energy- and voltage-dependent trans-
mission coefficients of the junction, defined in Eq. �A14� in
Appendix A, and nL,R are the distribution functions of the left
�L� and right �R� electrodes, also defined in Appendix A.
G�V� can be approximated at low enough voltages by the
linear-response formula

G�V� � G0T�E = eV,0� = G0T�E = eV� . �2�

We show in Figs. 1 and 2 the transmission coefficients
T�E� for all the gold and platinum junctions simulated. No-
tice that we have taken the Fermi energy of the semi-infinite
electrodes at equilibrium as the reference energy. Overall, we
find that the zero-voltage conductance G�0� is of order G0,
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FIG. 1. Transmission coefficients at zero voltage as a function
of energy T�E� for a number of first-row diatomic molecules and
CO attached to �001� gold electrodes. The zero of energies corre-
sponds to the position of the Fermi energy of the electrodes at zero
voltage. The distance between the last gold atoms at the electrodes
and the molecules is set to the equilibrium distance for the gold-H2

junction �1.5 Å�.
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FIG. 2. Transmission coefficients at zero voltage as a function
of energy for a number of first-row diatomic molecules and CO
attached to �001� platinum electrodes. The geometry of the junc-
tions has been relaxed in this case.
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with the only exception of the platinum-F2 junction. Further,
all the transmission coefficients are rather smooth at positive
energies while they show peaks in a range of energies below
EF. These peaks do not correspond to molecular states but
rather to the d-band conduction channels at the electrodes
and are naturally located either a few eV below EF for gold
or extend up to EF for platinum. In this last case the d chan-
nels can also affect the zero-bias conductance and increase it
if they are also coupled to the molecular states �in the same
way platinum chains can give a conductance greater than
1G0�.

A closer look at Fig. 1 shows that T for gold junctions is
either a plateau �as in Li2, Be2, and F2� or the sum of a
plateau and a broad resonance �in B2, C2, N2, O2, and C�.
The broad resonances are due to the coupling between the
two p orbitals perpendicular to the transport direction and the
d states of the gold atom that can couple to them by symme-
try, which can be seen by the fact that the transmission on
these peaks reaches more than 2. This transmission adds up
to the background due to the coupling of the s and pz states,
which around the Fermi-level couple mainly to the s state of
gold and therefore can have a maximum value of 1. The
low-voltage conductances are close to G0 for Li2 and F2
while they are of order 0.3–0.7G0 for Be2, C2, N2, and CO,
and of order 1.5–2G0 for B2 and O2.

The transmission coefficients of platinum junctions in Fig.
2 show a slightly more complex structure but are still pretty
smooth and show no sign of the narrow resonances that mark
the tunneling regime. For platinum, Li2 and N2 show con-
ductances of about G0 while Be2 and CO have about half a
conductance quantum, and B2, C2, and O2 have conduc-
tances in the range 1.5–2G0. The conductance of F2 is below
0.1G0. Our results for CO agree with a previous simulation
preformed by Strange et al.23 but fail to reproduce the peak
at 1G0 shown in the experimental conductance histograms.18

As a side remark, we should point out that we have found
that the conductance of the diatomic molecule between plati-
num electrodes may increase or decrease by even a factor of
2 depending on its placement and orientation. The great de-
pendence of the conductance on the structural configuration
in the case of platinum is basically due to two reasons. On
one hand the presence of the pyramids of four atoms between
the molecule and the leads, which we also relax, give addi-
tional degrees of freedom and varies to a larger extent the
structure of the junction as compared to the gold case where
only the surfaces were present and were not relaxed. On the
other hand the presence of the d states at the Fermi level
makes the junction very sensitive to structural changes since
they can couple or decouple to molecular states depending
on the distance and orientation of the molecule.

III. ANALYTICAL MODELS

Caroli’s model in its simplest form is depicted schemati-
cally in Fig. 3. It consists of two identical semi-infinite
chains, called L and R electrodes, which sandwich a free-
standing atom �M� so that three of them are initially uncon-
nected. The chains have a single orbital per atom of energy
�; electrons can hop between atoms via the Hamiltonian ma-

trix element t. The three pieces are initially held at the same
bias voltage and the common Fermi energy EF of the unbi-
ased chains is taken as the reference energy. Since the chains
are semi-infinite, they can be regarded as reservoirs of elec-
trons, subjected to a given equilibrium chemical potential
�L,R, whose energy-level population is described by the
Fermi distribution functions nL,R. The central atom is held
initially in thermodynamic equilibrium by its contact to a
third reservoir at the arbitrary chemical potential �T=eVT.
This determines the equilibrium distribution of the atom nM
and therefore its population. The whole system is subse-
quently biased by a voltage V so that the chemical potentials
of the chains is shifted to �L,R= �eV /2 while the chemical
potential at the atom can still be left equal to the initial value,
although it is physically more reasonable to reset it to the
average between �L and �R. Notice that the three pieces stay
initially in equilibrium since they are unconnected. Later on,
the central atom is connected to the electrodes by adiabati-
cally switching on the hopping integrals between them until
they reach their final value tM. We assume that the system is
able to reach an stationary nonequilibrium state long time
afterward,24 where there is a total bias voltage between the
electrodes equal to V that induces a finite electron current. It
is important to stress that the charge population at the atom is
determined by its contact to three reservoirs, each at a dif-
ferent chemical potential. Notice furthermore that while the
coupling to the chains is controlled by tM, the coupling to the
third reservoir cannot be modulated so that the flow of elec-
trons between it and the atom is completely transparent.

This model can easily be solved analytically using the
machinery of the nonequilibrium Green’s functions
formalism25,26 �see Appendix A for a thorough algebraic
derivation�. Figure 4 shows the results for the density of
states at the atom

�M��� = −
1

�
Imag�gMM

R ���� , �3�

where gMM
R is the retarded Green’s function at the central

atom, which is defined in Appendix A. The figure also shows
the conductance G�V�, which has been computed in this case
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FIG. 3. �a� Two chains made up of P atoms �P→	�, connected
to a central atom by a hopping matrix element tM. Each of the atoms
in the chains has a single orbital with atomic energy �; electrons in
the chains hop from one atom to the next via the hopping integrals
t. The central atom has a single orbital of energy �M. �b� Two
atomic chains connected to a diatomic molecule. Each atom in the
molecule has a single orbital of energy �M; electrons hop between
the two orbitals via the intramolecular hopping integral T.
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performing the numerical derivative of the current through
the junction, to access the high-voltage behavior.

Notice that in this model the position of the HOMO/
LUMO levels with respect to the Fermi energy of the elec-
trodes �taken as 0� is given by the atomic energy �M while
the hopping integral tM denotes the strength of the HOMO/
LUMO hybridization with the electrodes. The hybridization
causes two important and well-known effects on the bare
atomic level �M. First, it renormalizes it, e.g., the level
changes its energy. Second, it broadens it since now an elec-
tron initially placed at the atomic level can hop back and
forth to the electrodes, and hence the atomic state acquires a
finite lifetime. These two effects are readily seen in �M,
whereby the initial deltalike peak corresponding to the
atomic states moves and broadens to a resonance. The reso-
nance is sharp if tM is much smaller than t, or broad if tM and
t are of the same order of magnitude. What we wish to stress
here is that the extent of this broadening also determines the
behavior of the conductance of the junction.

Figure 4 illustrates how the different regimes of a junction
manifest in the DOS and the conductance and how these
regimes are controlled by the basic parameters of the model.
In all these cases we chose �=0 and t=1. The top three
panels correspond to the resonant tunneling regime. Notice
that this regime is seen even for values of the hybridization
tM as large as 0.2. This regime is characterized by a sharp
resonance in the DOS, located at the energy position of the
molecular orbital �M. Additionally, sharp resonances appear
in the conductance at different voltages, whose maximum
height cannot exceed G0. The low-voltage conductance is
very small except if the molecular orbital is pinned to the
Fermi energy in which case G�G0. We stress that the mo-
lecular level must be fine tuned to the Fermi energy to
achieve sizable values of the conductance. It is important to
stress again that the resonant tunneling regime is achieved by
values of tM which are smaller, but not much smaller, than t.
Just a factor of 5 is enough to place a junction within it.

The bottom panels in Fig. 4 correspond to highly trans-
parent junctions, which corresponds to values of tM �1. The

molecular orbital is in this case fully hybridized with the
conduction channels at the electrodes. The DOS is very
broad and has a width of the order of the bandwidth of the
conduction channels at the electrodes. More importantly, the
conductance is very flat and its height is very close to G0.
Notice that this happens for a wide range of positions of the
molecular orbital �M. Therefore, if the hybridization between
the molecular orbital and the conduction channels is large,
then there is no need whatsoever to fine tune the position of
the molecular orbital. In other words: when tM �1, the mo-
lecular orbital is always tuned, provided it is initially located
within the band of the conduction channels at the electrodes.
This is one of the central results in this paper.

The middle panels in Fig. 4 show the situation for junc-
tions of intermediate transparency, The DOS reflects this
crossover behavior, where a resonance has already been de-
veloped but still has a large width. The conductance is very
flat but we point that its height has a stronger dependence on
the position of the molecular level than was the case of the
highly transparent junction.

It is fortunate that some ab initio simulation codes22 allow
to make approximate estimates of the physical parameters
that appear in Caroli’s model. We have indeed recently per-
formed such estimates for a constriction consisting of plati-
num electrodes bridged by H2 molecules. We found that in
this case t� tM �5 eV �e.g., tM / t�1� and that the antibond-
ing state of the molecule was located within the s-d-band
complex of platinum.15 We hence ascribed that junction to
the highly transparent regime, driven by the large value of
tM. Most of the junctions that we have simulated in this
paper, on the other hand, correspond to the crossover regime,
where the conductance is of order G0 but where its exact
value has a significant dependence on the exact position of
the molecular orbital. This is also the case of the benzene
junctions discussed by Kiguchi et al.17

To make a closer contact with experiments on diatomic
molecules, we have performed a slight modification of Caro-
li’s model that we call the diatomic model. In it, the central
atom is replaced by a diatomic molecule as depicted in Fig.
1�b�. The nice feature of this model is that on the one hand,
it accounts for both HOMO and LUMO levels and on the
other, it is also easily solved analytically �the algebra is rel-
egated to Appendix B�. This model can be applied directly to
the case of the platinum-H2 constriction, where we showed
that the electronic conduction is carried by the antibonding
state of the molecule, which is strongly hybridized to the
platinum conduction bands while the bonding state lies
slightly below the edge of the platinum conduction band and
hence does not participate in the chemical bond, showing up
as a sharp resonance in the DOS.15 As stated above, we es-
timated that for this case tM � t�5 eV �tM / t�1� while T
was slightly larger, about 6 eV �T / t�1–1.5�.

We display in Fig. 5 the results of the diatomic model for
the DOS at the left atom in the molecule and for G�V� for the
case where T=1.5, and where the bonding state lies below
the conduction-band edge and hence shows up as a sharp
resonance in the DOS. We again find that when tM is much
smaller than t, both the DOS and G display resonant behav-
ior, whereby the conductance is always very small, except
for specific �usually too large� voltages, or when the anti-
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FIG. 4. �Color online� Conductance as a function of voltage
�solid black curves� and density of states at the atom at zero voltage
as a function of energy �dashed red curves�, for Caroli’s model. The
nine panels displayed correspond to different choices of the param-
eters tM and �M.

J. FERRER AND V. M. GARCÍA-SUÁREZ PHYSICAL REVIEW B 80, 085426 �2009�

085426-4



bonding state is finely positioned at the Fermi energy. On the
contrary, when tM � t, the resonance broadens and the con-
ductance has long plateaus with values close to G0. The re-
sults that compare best to our simulation data for the DOS at
the molecule in the platinum-H2 constriction �see Fig. 3 in
Ref. 15� correspond to the middle panel in the bottom row.
Hence we expect that this model can describe correctly the
platinum-H2 constriction if we use the parameters T�1.5,
tM �1, and �M �−1. Notice that the conductance indeed dis-
plays a value close to G0.

A final note in this section relates to the large variability
in the conductance obtained experimentally in BDT/gold
junctions. We remind that the voltage at which the conduc-
tance resonances depends strongly on the energy position of
the molecular orbital for junctions belonging to the resonant
tunneling regime. In other words, the value of the measured
conductance depends strongly on the details of the orbital
and its bonding for this type of junctions. On the contrary,
since the conductance has a weak dependence on the details
of the molecular orbital for highly transparent junctions, we
expect that the experimental variability must be suppressed
for them.

IV. ANALYSIS OF BENZENE AND BENZENE-DITHIOLATE
JUNCTIONS

Benzene and benzene-dithiol are conjugated molecules
whose HOMO and LUMO states correspond to �-bonded p
orbitals, which are delocalized throughout the whole mol-
ecule. BDT/gold structures are archetypical molecular junc-
tions, which are used as templates against which both theory
and experiments are benchmarked. Experimental data show
always small conductance values, which range from one to
three orders of magnitude smaller than G0, depending on the
experiment. Theoretical results tend to shed larger values for
G, typically on the order of 0.05 to 0.1 G0. This discrepancy

is usually attributed to a poor description of electronic cor-
relations by the theoretical models.27 BDT/gold junctions
therefore seem to belong to the resonant tunneling regime
described in the previous section. Interestingly, benzene/
platinum junctions are highly conductive,17 showing values
of G on the order of G0, which indicates that these junctions
belong to the intermediate to high transparency regime of
Caroli’s model. It is therefore important to understand better
the contrasting behavior of these seemingly similar junc-
tions.

In order to do so, we have simulated BDT molecules at-
tached to �001� flat gold surfaces. BDT molecules attach via
the thiolate groups, such that the sulfur atoms are placed in
hollow sites at each side, as shown in Fig. 6�a�. We have set
a sulfur/gold distance of 2 Å, such that the junction is
slightly stretched. We have also simulated benzene mol-
ecules attached to �001� gold surfaces. The surfaces are ini-
tially flat but we have placed an additional gold atom on top
of each of them to provide for a preferred anchoring site.
Benzene molecules bind to these electrodes via the
�-conjugated molecular orbitals, yielding a geometry for the
junction such as that shown in Fig. 6�b�. We have set a dis-
tance of 5.0 Å between the two apex gold atoms, which is
again slightly longer than the equilibrium distance of the
junction. We note that there is no direct hybridization be-
tween gold orbitals at each side of the junction for such a
distance, which is confirmed by negligible transmission co-
efficients T�E�. Upon relaxation of forces, we have found
that the center of the benzene plane is tilted in such a way to
maximize the bonding between the � orbitals and the apex
gold atoms.

The transmission coefficients of both junctions are plotted
in Figs. 7�a� and 8�a�. We find that they both show reso-
nances, whose width allows to classify them in the interme-
diate transparency regimes at first sight. Consequently, the
effective hybridization between the HOMO/LUMO levels
and the conduction channels is neither too large nor too
small. We therefore expect that the conductance must have
a relatively strong dependence on the details of the junc-
tions. By analyzing the projected density of states in Figs.
7�b�–7�d� and 8�b�–8�d� it is also possible to determine
which atomic orbitals contribute most to the HOMO and
LUMO as well as how localized these are.28

Our simulations of the benzene-dithiolate/gold junctions
yield a zero-voltage conductance of about 0.1G0. These junc-
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FIG. 5. �Color online� Conductance as a function of voltage
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FIG. 6. �Color online� Geometry of �a� benzene-dithiolate/gold
and �b� benzene/gold junctions. The drawings show the last layer of
gold atoms at each electrode and the carbon, hydrogen, and sulfur
atoms of the molecules. �b� also shows the gold apex atoms at-
tached to the gold flat surfaces.
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tions show two main peaks, placed 1 eV below and 2 eV
above the Fermi level, respectively. This means that their
zero-voltage conductivity is mostly determined by the
HOMO, which is mainly made of the p�1 states of sulfur, as
can be seen in Fig. 7�b�. Such states are perpendicular both
to the transport direction and to the BDT molecule. They
could only couple to the s or p�1 states of carbon in the
molecular backbone for symmetry reasons. This is not the
case however: Figs. 7�c� and 7�d� show that these carbon
states do not hybridize with the sulfur states and are actually
located at different energies. As a consequence, those elec-
trons placed at the HOMO state see an effective tunnel bar-
rier to hop from one sulfur atom to the other. This tunnel
barrier is not too long however since the distance between
the sulfur atoms is not large. The outcome is that the HOMO
resonance is not too narrow and reaches a transmission of
almost 1. The LUMO is in contrast, localized on the carbon
atoms in the molecular backbone, as can be seen in Fig. 7�d�.
This is in good agreement with previous calculations.29

The HOMO and LUMO resonances of the benzene/gold
junctions are placed at −2 and +1 eV, respectively, which

means that the zero-voltage conductivity is in this case
mainly determined by the LUMO. Notice that the geometry
of this junction is such that the �-conjugated orbitals hybrid-
ize directly with the conduction channels at the electrodes.
Consequently, the LUMO resonance in the density-of-states
and transmission coefficients is broader than in the case of
benzene-dithiolate junctions, as is shown in Fig. 8. Superim-
posed to the LUMO resonance, there exists a sharper addi-
tional peak, which is produced by other localized states of
the molecular backbone. Notice that in this case it is not so
easy to separate p orbitals parallel or perpendicular to the
molecular backbone because the benzene molecule is tilted.
The HOMO resonance in the density-of-states and transmis-
sion coefficients is contributed by states at the apex gold
atoms, which give rise to molecular states similar to the pre-
vious sulfur states of benzene-dithiolate junctions.

By performing a careful analysis of the alignment of mo-
lecular levels before and after adsorption to the gold surfaces
it is also possible to determine how the molecular levels
arrange after coupling to the electrodes. We calculate the
energy alignment before coupling by using a unit cell with
the isolated molecules or a gold slab and a hydrogen mol-
ecule away enough to define a common reference. We take as
an approximation to the gold work function the Fermi energy
obtained for a slab of five gold layers. In the BDT case we
find that both the HOMO and LUMO, which are very close
in energy, lie below the gold Fermi energy. This happens
because the HOMO of the benzene-dithiol becomes the
LUMO of BDT when it looses the hydrogens attached to the
sulfur atoms. When the BDT molecule and the gold electrode
get together such levels move upward30 and the highest level
below EF gets pinned at the Fermi energy so that the mol-
ecule ends up winning a bit of charge after coupling �30.58e
vs 30.00e for the neutral BDT, obtained from the Mulliken
populations�. Coupling to the gold surfaces resembles attach-
ment to hydrogen atoms and therefore the resonance at the
Fermi energy can be considered the HOMO of the extended
molecule, which is separated �3 eV from the LUMO. This
gap is similar to the HOMO-LUMO gap of benzene-dithiol,
which is 3.32 eV. In the case of the benzene molecule the
HOMO-LUMO gap is bigger �4.25 eV� and the LUMO lies
above but close to the Fermi energy so that when the mol-
ecule and the gold slab couple the LUMO is pinned at EF
and the molecule ends up winning charge �40.63e vs 40.00e
for the neutral molecule� as a consequence of the partial
filling of this level.

The reactivity of the thiolate groups is therefore detrimen-
tal of the conductivity of benzene-dithiolate junctions. In
other words, BDT molecules attach to the electrodes via the
thiolate groups, yielding a junction geometry where the
HOMO and LUMO do not bind to the conduction channels.
The transmission coefficient of this molecule near the
HOMO resonance can be explained by using the same
simple model employed in the case of alkanes31 by realizing
that such state is in reality composed of two almost degen-
erated states located on the sulfur atoms and weakly coupled
through the benzene ring. By using a simple two-level sys-
tem as the one shown in Fig. 1�b� it is possible to derive the
following formula for the transmission:
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T�E� =
4
L
RT2

��E − �M��E − �M� − 
L
R − T2�2 + ��E − �M�
R + �E − �M�
L�2 , �4�

where 
 are the gamma matrices, defined as 
= tM ��, where
� is the density of states in the leads, which in the case of
gold can be taken as constant around the Fermi level due to
the presence of only a broad s band. By using �M =−1, 
L
=
R=0.5, and T=0.53 �everything in eV� we obtain the
curve shown in Fig. 9, which looks very similar to the
HOMO obtained in the ab initio computations. Notice this is
not a Lorentzian curve �it is composed instead of two Lorent-
zians� and its width can therefore not be univocally assigned
to the coupling to the leads.

V. CONCLUSIONS

We have performed simulations of a number of molecular
junctions, where �001� gold or platinum electrodes sandwich
first-row diatomic molecules. We have found that these junc-
tions are highly conductive, which is manifested both in
large values of the conductance and in smooth transmission
coefficients T�E�. We have used Caroli’s model to argue that
this is a generic feature of the transparent regime of a junc-
tion, which is driven by a high hybridization between the
delocalized molecular orbitals in the molecule and the con-
duction levels at the electrodes.
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APPENDIX A: CAROLI’S MODEL

It is convenient from a mathematical point of view to split
the total Hamiltonian in two pieces: the unperturbed Hamil-

tonian of the total system H0 and the perturbation that drives
the system out of equilibrium H1. We use the basis of atoms
in the system, whose 2P+1 states we denote by �i	. Then the
Hamiltonians can be written as the following matrices:

H0 = 
ĤL 0 0

0 �M 0

0 0 ĤR
� H1 = 
 0 T̂L 0

T̂L
† 0 T̂R

†

0 T̂R 0
� , �A1�

where HL,R are P� P tridiagonal matrices of the form

ĤL,R =

. . . . . . . .

. 0 t � � eV/2 t 0 . .

. . 0 t � � eV/2 t 0 .

. . . . . . . .
�

�A2�

and T̂L
† = �. . . ,0 ,0 , tM� and T̂R

† = �tM ,0 ,0 , . . .� are
P-dimensional vectors.

The retarded and advanced Green’s functions of the un-
perturbed system can be calculated through the equations

��� − H0�G0
R,A�w� = I , �A3�

where ��=�� i�, � being an infinitesimal number. Notice
that G are also huge matrices of size �2P+1�� �2P+1�.

This large set of coupled equations can actually be re-
duced enormously by Gaussian elimination of the atoms in
the electrodes until only three states remain, �L	 , �M	 , �R	.
The resulting 3�3 matrix Green’s functions are called F to
avoid confusing them with the conductance, which is de-
noted by G. Their matrix elements �R /A superindices are
henceforth dropped when there is no danger of confusion�

F0 = 
gL 0 0

0 gM 0

0 0 gR
� . �A4�

Here gL,R are the surface Green’s function of the electrodes
and in our one-dimensional model they are equal to

gL,R
R,A =

2

�� − � + ���� − ��2 − 4t2
. �A5�

To simplify matters, we will take henceforth �=0 and t as the
energy unit. We also define a lesser Green’s function that
carries information of the electron occupation in each piece,

-4 -2 0 2
E (eV)

0

0.2
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FIG. 9. HOMO resonance calculated with a two-level system,
where �M =−1 eV, 
L=
R=0.5 eV, and T=0.53 eV.
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F0

 = 
gL


 0 0

0 gM

 0

0 0 gR

� , �A6�

where each gL,R,M

 ��� is written in terms of the density of

states �L,M,R and the Fermi distribution function nL,M,R of
each unconnected piece, as gi


���=2�i�i��−eVi�n��−eVi�.
Then the Keldish formalism21,25 provides a simple recipe

to compute the Green’s functions of the final system in the
steady state,

FR = ��G0
R�−1 − H1�−1 = 
 gLL

R gLM
R gLR

R

gML
R gMM

R gMR
R

gRL
R gRM

R gRR
R � ,

F
 = GR�G0
R�−1G0


�G0
A�−1GA = 
 gLL


 gLM

 gLR




gML

 gMM


 gMR



gRL

 gRM


 gRR

 � .

�A7�

These equations can easily be solved analytically with the
following result for the retarded/advanced Green’s function:

tM
2 F =

1

D
�L�� − �M − �R� tM�L �L�R

tM�L tM
2 tM�R

�L�R tM�R �R�� − �M − �L�
� ,

�A8�

where �L,R= tM
2 gL,R and D=�−�M −�L−�R. Likewise, F


can be written as the sum of the following three matrices:

L =
2�i�LnL

�D�2 
 �� − �M − �R�2 tM�� − �M − �R
R� �R

A�� − �M − �R
R�

tM�� − �M − �R
A� tM

2 tM�R
A

�R
R�� − �M − �R

A� tM�R
R ��R�2

� ,

R =
2�i�RnR

�D�2 
 ��L�2 tM�L
R �L

R�� − �M − �L
A�

tM�L
A tM

2 tM�� − �M − �L
A�

�L
A�� − �M − �L

R� tM�� − �M − �L
R� �� − �M − �L�2

� ,

tM
2 M =

2�i�MnM

�gMD�2 
 ��L�2 tM�L
R �L

R�R
A

tM�L
A tM

2 tM�R
A

�R
R�L

A tM�R
A ��R�2

� . �A9�

These lesser Green’s functions enter the calculation of the
electronic charge and current. For instance, the charge at the
atom NM can be written as follows:

NM =� d�

2�i
gMM


 ���

=� d�

2�
�gMM

R �2

LnL + 
RnR +

M

�tMgM�2
nM� .

�A10�

This formula for the charge can be rewritten in terms of the
conventional expression for the equilibrium state

Neq = −� d�

�
Im�gMM

R �nL �A11�

plus an explicit nonequilibrium term

Nnoneq =� d�

2�
�gMM

R �2
R�nR − nL�

+� d�

2�
�gMM

R �2

R

�tMgM�2
�nM − nL� , �A12�

where


L,R = i��L,R
R − �L,R

A � = 2�tM
2 �L,R�� − eVL,R�

and likewise


M = 2�tM
2 �M�� − eVT� .

The current traversing the left contact is computed via the
formula

ILM = −
2etM

�
� d�

2�
�gLM


 − gML

 � , �A13�

which can be written as a sum of the following two contri-
butions:
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Ileads = −
G0

e
� d��gMM

R �2
L
R�nL − nR�

= −
G0

e
� d�T�E = ��,V��nL − nR� ,

Iatom,L = −
G0

e
� d��gMM

R �2

L
M

tM
2 nM . �A14�

Notice that the current traversing the right contact can be
written as the sum of Ileads plus Iatom,R where

Iatom,R = −
G0

e
� d��gMM

R �2

R
M

tM
2 nM . �A15�

Since these atomic contributions apparently break the con-
servation of charge, Iatom,�L,R� are usually dropped �as is the
second term in Eq. �15��. In other words, the total current I is
approximated by Ileads.

APPENDIX B: DIATOMIC MOLECULE MODEL

The unperturbed Hamiltonian and the perturbation in the
diatomic model take the form

H0 =
ĤL 0 0

0 �M T 0

0 T �M 0

0 0 0 ĤR

� , �B1�

where HL,R are the P� P tridiagonal matrices described in
Appendix A and

H1 =

0 T̂L 0 0

T̂L
† 0 0 0

0 0 T̂R
† 0

0 0 T̂R 0
� . �B2�

After decimating the unwanted degrees of freedom, the un-
pertubed Green’s functions look like

F0
R,A,
 = 
gL

R,A,
 0 0

0 ĝM
R,A,
 0

0 0 gR
R,A,
� , �B3�

where

ĝM
R,A = 
� − �M − T

− T � − �M
� �B4�

and ĝM

 =−1 /��ĝM

R − ĝM
A �nM. The algebra is more tedious but

the final result for the retarded Green’s function tM
2 F is the

following:

1

D

�L��� − �M��� − �M − �R� − T2� tM�L�� − �M − �R� tMT�L T�L�R

tM�L�� − �M − �R� tM
2 �� − �M − �R� tM

2 T tMT�R

tMT�L tM
2 T tM

2 �� − �M − �L� tM�R�� − �M − �L�
T�L�R tMT�R tM�R�� − �M − �L� �R��� − �M��� − �M − �L� − T2�

� ,

�B5�

where D= ��−�M���−�M −�R−�R�−T2+�L�R and the equation for the current traversing the left link can be written as

ILM = −
2e

h
� d�
L
R�GMM�

R �2�nr − nL� , �B6�

where the atomic contribution has been neglected again and GMM� refers to the element �2,3� of the retarded Green’s function
matrix that connects the two atoms in the molecule.
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